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WEIGHTED LEAST SQUARES FIT OF A REAL TONE TO DISCRETE DATA, 

BY MEANS OF AN EFFICIENT FAST FOURIER TRANSFORM SEARCH 

INTRODUCTION 

Estimation of the parameters of a tone with unknown amplitude, frequency, 

and/or phase has attracted considerable attention; see, for example, [1-9]. 

However, fitting data with a single pure complex tone leads to a simpler 

search problem than fitting with a real tone (as will be demonstrated in the 

next section). In particular, fitting with a complex tone was considered in 

[1-5, 7], while fitting with real tones has been the subject of [5, 8, 9]. 

However, the frequency of the tone was assumed known in [6, 8], whereas it had 

to be estimated in [9]. 

Here we will extend the results in several directions for the case of 

fitting real data with a real tone. First, arbitrary real weighting of the 

errors at each discrete instant are incorporated. Second, the function that 

must be searched for a maximum is manipulated into a form which requires that 

only two FFTs of two real sequences be conducted. Third, these two operations 

are combined into one FFT of a complex sequence, the outputs of which are 

decoupled in a very efficient manner, in order to yield the desired search 

function. Fourth, parabolic interpolation of the three outputs in the 

neighborhood of the search maximum is employed in order to give a refined 

estimate of the tone frequency. Finally, a minute search for the best tone 

frequency is conducted, the extent of which is left up to the user. The end 

result of this investigation is a program for conducting an efficient and fast 

fine-grained search for the determination of the unknown amplitude, frequency, 

and phase of the best-fitting real tone to a given set of discrete real data 

and subject to any error weighting of interest. 

This procedure is applicable to arbitrary data record lengths. Also, no 

assumptions about the statistics of any additive noise, that may be present in 

the data record, are made. However, when the available data record is the 

result of a pure tone and additive zero-mean Gaussian noise, the procedure can 

be interpreted as maximum likelihood estimation [9]. 
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ERROR MIMIMIZATION 

Before we begin the detailed investigation of fitting a real tone to real 

data, we first consider the simpler problem of fitting a pure complex tone. 

This will serve as a comparison procedure and will oack up the statement made 

in the Introduction. 

COMPLEX TONE 

The discrete data available consist of N values {xi^}, taken at 

increment A. If the data are complex and we fit the data with a pure complex 

tone, we must address the problem of minimizing the weighted squared error 

E = / ^k I k ~ " 6xp(iu)kA) 

k 

(1) 

where the summation on k is taken over all nonzero summands. Normally, the 

data {x|."\ and real weights (w.^^ will be taken to be nonzero over the range 

1 <_ k <_ N; however, the presentation allows for any range of the variable k. 

The parameter a in (1) is the complex amplitude, and u is the pure tone 

(radian) frequency, which is presumed real. 

If we consider u given for the moment in (1), the best choice of a to 

minimize error E is given by 

% =  ^\ \  exp(-iu.kA) /;^w^ . 
k       _   / k 

Substitution of this result for a in (1) results in error 

E(o)) = 2\Kf - \^\ \  exp(-i-kA) Y^w 

(2; 

(3) 



TR 7785 

This error is tninimized by choosing frequency u to maximize the quantity 

2_ W|^ x^  exp(-ia)kA) 

k 

(4) 

which is the standard magnitude-squared Fourier transform of the weighted 

data. Thus, direct application of an FFT is a good procedure to apply to this 

problem and has been so employed in the past [5]. Since (4) has period 2TT/A 

in u), there is no need to compute (4) except for the range —n <_ WA <_ ir. 

REAL TONE 

We now restrict consideration to the case of major interest here, namely, 

real data {x^], and attempt to fit it with samples of a pure real tone, that 

is. 

a COS{u)kA) + B Sin(a)kA) (5) 

Here, a and 0 are the real coefficients of the in-phase and quadrature 

components of the tone. If we let "normalized frequency" 

a = CA)A , (6) 

the weighted squared error to be minimized is 

E = ^ w, [x, - a cos(ak) - B sin(ak)] . (7) 

For later use, we define the two Fourier series: 

'^^) = Z^k  exp(-i^'<) ' 

L{u) = ^W|^ X|^ exp(-iuk) . (8) 
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The first is the window associated with weights {^i?\,  while the latter is 

the Fourier transform of the weighted data. 

The variable a appearing in (7) will be called the "frequency" of the 

tone.  If we consider frequency a given for the moment, setting the partial 

derivatives of error E with respect to a and B, both equal to zero, results in 

the pair of simultaneous linear equations for their optimum values: 

\l  "o ' ^2 'o  = ^A'^   ' 

A 12«o'^22^o = -h(^) • '       ^9) 

Here sub r and i denote real and imaginary parts, respectively. We also have 

the scale factors expressible in the forms 

^11 = 2^k cos^ak) = ^[w(0) + W^(2a)] , 

A22 = ^w^ sin^ak) = ^[w(0) - W^(2a)] , 

^12 = 5^k co^^^"^) sin{ak) = - | W.(2a) , (10) 

k 

where we have made extensive use of (8). Solution of (9) yields for the tone 

coefficients, 

'^ir22   12 

'0-—TT^T^—• ^   ^ 
'^ir22   12 

The use of (9)-(ll) in error (7) now results in modified error 
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E(a) = ^'''^k t^k " ^'o ^os^^"^) " ^0 ^'•"^^•^^^ " 
k 

= 2^k ^^k " "o '^o^^^'^) - ^0 ^^"(^'^)3 ^k " 
k 

k 

= 2_\ \  - B(a) , (12) 
k 

where we define real function 

B(a) = a^ L^(a) - e^ L.{a) = 

A,^L^(a) + 2Ai,L (a)L.(a) + A^A^la) 22 r^  ' 12 r^  '  1    '        Hi 
 2  

A     A       - A 
ir22      ^^12 

(13) 

This quantity, which must now be maximized by choice of a, was previously 

encountered in [9; (10)], but limited there to the case of equal weights 

(wi^"]. We concentrate henceforth on function B(a), aware that we can always 

return to error E(a) by means of (12). 
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MANIPULATIONS OF 8(a) 

In this section, we derive alternative forms, properties, and 

interpretations of the function B(a). Tne weighted squared error is directly 

related to B(a) by means of (12). 

ALTERNATIVE FORM FOR B(a) 

A more useful and compact form for B(a) in (13) is possible. Reference 

to (10) reveals that the denominator of (13) is simply 

^[w2(0) - |w^(2a)|] . (14) 

Similarly, use of (10) allows development of the numerator of (13) according to 

|(W(0) - W^(2a)]L^(a) - W. (2a)L^(a)L. (a) +^[^(0) + W^(2a)] L^(a) = 

= ^W(0)|L^(a)| - ^[w^(2a)L^(a) + 2W.(2a)L^(a)L.(a) - W^(2a)L^(a)] = 

= -^W(0)|L^(a)|-^ Re(/(2a)L^a)] . (15) 

Coupling (14) and (15) together, the expression in (13) becomes 

B(a) =2^iO)\lh^)\-Re{Az^)l^i.)\   ^ ^,,^ 
W^(0) - lw^(2a)| 

The required quantities here are available from (8) as 

W(2a) = 2w|^ exp(-i2ak), 

k 

L(a) = ^w^^ x^ exp(-iak) . (17) 
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It is immediately obvious from (16) that 8(a) can never be negative 

(presuming that tne weights are nonnegative). 

The general result for t3(a) in (16) is the quantity that must be 

maximized by choice of frequency a. However, it is interesting to observe 

that for frequencies where the window is small, that is. 

|w(2a)| « W(0) . (18) 

then (16) simplifies to 

B(a)« ^|L^^^)1 =mj l^ \ e^p^-i^^) (19) 

which is identical to (4). Thus, for those frequencies where (18) is true, 

the function B(a) is approximately the magnitude-squared Fourier transform of 

the weighted data; this corresponds to values of a not near multiples of IT. 

PROPERTIES OF B(a) 

Since W(2a) has period IT in a, while L(a) has period 2TT in a, the 
4 

function B(a) in (16) must have period 2IT in a; that is. 

B(a + 2IT) = B(a) (20) 

But at the same time, we have even property 

B(-a) = B(a) , (21) 

* * 
because L(-a) = L (a), i'J(-2a) = W (2a), using the realness of sequences 

fw|_^^ and fx|^]. What this means is that we only need to 

compute B(a) for 0 < a <_ IT , (22) 

since all other values can be obtained therefrom. Reference to (6) reveals 

that u is being varied over the range (0, TT/A), or that cyclic frequency 

f = u/(2Tt) is varying over (0, .5/A). This latter range extends up to the 

Nyquist frequency, as expected. 
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VALUE OF B{a) AS a > 0 

If we substitute a = 0 in (16), we get B(0) = 0/0, which is 

indeterminate. Hence, for small a, we expand (17) according to 

W(2a) ~ WQ - i2aWj^ - Za^W^ , 

L(a) ~ LQ - iaL^ -| A^  . (23) 

where n-th order "moments" 

n  <C k   ' 
k 

. k 

Substitution of (23) in (16) and simplification yields 

a»0 ^gWg - W^ 

This limiting result is the same value that is attained as if we 

minimized weighted error 

E = Jw^ [x^ - p - vkf  , (26) 
k 

by choice of constant value \i  and linear trend vk.  In fact, direct 

minimization of (26) yields optimum coefficients 

^24 - ^i4 Vi - ^I'-o 
^"0 " 2~ ♦ "O " 2~ 

V2-^l        V2-^l 

and associated minimum error 

8 

(27) 
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2 1 

h-2.\\ — -2  • ^28) 
k .        .  V2 - ^1 

As claimed above, the last term in (28) is precisely the result given by (25); 

see (12) also. Thus, the limit, as a > 0, of model fit (7) is the best- 

fitting constant plus linear trend to the given data. This can be obtained 

from (7) only if quadrature coefficient s behaves as 1/a as a > 0. Indeed, in 

a later section, we will show that this is precisely the behavior of e in this 
limit. Thus, setting a = 0 in (7) and keeping e finite does not lead to the 

result in (25) and (28), but instead gives only the best fitting constant. We 

will allow the more general fit afforded by (26) here, and will utilize the 

value achieved by (25) in the limit, as a » 0. 

VALUE OF B(a) AS a > IT 

If we substitute a = ir in (16), there follows B(ir) = 0/0, which is 

indeterminate. However, if we let a = TT + a, we see from (17) that 

W(2a) = W(2Tr + 2a) = W(2a) , 

L(a) = L(ir + a) = ^ w^ (-1)^ x^ exp(-iak) .        (29) 

k 

Thus, W(2af) behaves the same about a = 0 as W(2a) does about a = 0. Also, the 

last term in (29) behaves the same about If = 0 as L(a) does about a = 0, 

provided that each data element x^ is replaced by (-1) x^. Thus, (25) 

can be immediately utilized to yield the result 

limB(a)=-i^^^ ^-^ ^, (30) 
a>ii WQW2 - W^ 

where moments (24) have been replaced by 

Ln = ^(-1)'\\^"- (31) 
k 
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Physical interpretation of result (30) is similar to that given earlier 

for a > 0 in (25)-(28). Namely, in the limit as a > IT, the best constant plus 

linear trend is fitted to alternating data \(-l) X|^j. Again, this requires 

quadrature coefficient 3 in fit (7) to behave like l/(a - ir) as a > n. 

EXAMPLE OF EQUAL WEIGHTS 

Let weights 

w, = 1^  for  1 <_ k <^ N (32) 

Then window (17) becomes 

"'^^i-FiTtiry^p'-'C^*!)^) 
This is the example considered in [9], 

The moments (24) for this case are given by 

WQ = 1, W^ = ^(N + 1), W2 = |(N + 1)(2N + 1) , 

WQW2 - W^ = ^(N^ - 1) . 

The numerator of (25) is then 

L^ - (N + 1)L-^L^ +|(N + 1)(2N + 1)L^ = 

(33) 

(34) 

/   N + 1 , V . 1 ,^2  1^1 2 

<-^)T^i^ 1' k 
Lk J 

(35) 

10 
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Then  (12),   (25),  and  (34) yield 

lim E(a)  = TT   5 X,   - -^    ^ x. 
12 

N^(N^  - 1) 24-"^Jt 
(36) 

which can be recognized as the minimum error for the best-fitting constant 

plus linear trend to data (x,|. 

11 
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IN-PHASE AND QUADRATURE COEFFICIENTS 

Since the modeling waveform in (7) is 

ct cos(ak) + B sin(ak) = Re[(a - ie) exp(iak)] ,        (37) 

the complex coefficient or strength of pure complex tone exp(iak) is a - iB. 

From (11) and (10), the numerator of a - ie is expressible as 

A22l-^(a) + A^^'-i^'') "  i^llh^^) ^ iAi2^(a) = 

= -^[w(O) - W^(2a)]L^(a) + i^[w(0) + W^(2a)]L.(a) + 

+ i(-|]w.(2a)[L^(a) - iL.(a)] = 

= ~ W(0)L(a) - I W(2a)L*(a) . (38) 

Combining this with the denominator previously computed in (14), we have for 

the optimum complex coefficient. 

*. 
„ _i3 ^ 2 M)UaLzW(|i)k_li) . (39) 
°   °      W^(0) - lw'^(2a)| 

For frequencies a such that the window is small relative to the origin 

value (see (18)), (39) simplifies to the approximate result 

Cg - iB^ij 2L(a) = 2 5.Wk \  exp(-iak) , (40) 

k 

which is just the Fourier transform of the weighted data. 

If only the phase of the real tone is of interest, (39) indicates that 

12 
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arg(aQ - ie^) = arg(w(0)L(a) - W(2a)L*(a)) .       (41) 

If frequency a is known, this result is directly applicable; but if a is 
unknown, the value a that maximizes (15) must be used. 

NORMALIZATION OF WEIGHTS 

/iithout loss of generality, the sum of the weights W"^ can be set 
equal to unity; that is, set 

m)  = ^w^ = 1 . (42) 
k 

Then the complex coefficient in (39) reduces to 

L(a) - W(2a)L (a) ^ 

°   °     1 - |w^(2a)l 

while the maximizing function B(a) in (16) becomes 

L^a)| - Re{w*(2a)L^(a)l 
1 - lw^2a)| 

B(a) = 2 I*- ^'^^1 - '^'^ t; ^^^ "-  ^'"f   . (44) 

This slightly reduces the number of computations that have to be conducted and 
has been adopted in the program written here. This scaling is also retained 
in the following subsection. 

INTERPRETATION OF (43) 

An alternative form for coefficient (43) is 

a^-i3^=2L(a) -W(2a)L(-a) ^ ^,^^ 
1 - l'/(2a)| 

13 
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where we utilized the realness of data ^X|^^ and weights ^wJ . This result 

can be interpreted as follows: the term 

2L(a) = 2 ^w^ x^ exp(-iak) (45) 

k 

is an estimate of the complex strength of the positive-frequency complex 

exponential exp(iak) in the real data {x|J , as modified by the weights. 

Similarly, 2L(-a) estimates the strength of the term exp(-iak) in the real 

data. The window W(2a) measures the amount of spillover from frequency -a to 

frequency a, that is, at separation 2a, due to the weights [w^"]. This 

fraction (including phase information) of the spillover from negative 

frequencies to positive frequencies is subtracted from strength 2L(a). 

Finally, the denominator factor 1 - JW (2a)| renormalizes the remainder 

according to the fractional spillover. 

To justify this last scale factor, suppose that the data [x|^] contain a 

pure real tone at precisely the frequency a; that is, let 

X, = a cos(ak) + 3„ sin(ak) = 
k   0        0   ^ ' 

= Re{{a^ -  is^) exp(iak)] . (47) 

Then (46) yields 

2L(a) = ^^'^"o^^^P^^^'^^ ^  exp(-iak)) - iBQ(exp(iak) - exp(-iak) )]exp(-iak) = 

k 

= O.Q[1 + vJ(2a)] - ie^Ll - W(2a)] . (48) 

Therefore, 

2L(-a)  = 2L*(a) = a^Cl + W*(2a)] + iS^Cl - W  (2a)] . (49) 

Therefore, the numerator of a^ - ie^ in (45) is 

14 
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2L(a) - W(2a)2L(-a) = 

= c^d + W) - iB^d - W) - WCa^ll + W*) +18^(1 - W*)] = 

^ (a^ - ie^)!! - IW^I) = (a^ - i0^)[l - |w^2a))] ,        (50) 

where we adopted the notational simplification W = W(2a) during the 

manipulations. Thus, the denominator factor 1 - jW (2a)l in (45) is 

necessary to scale the amplitude back up to its correct value of a - ie . 

VALUE OF COEFFICIENT AS a > 0 

We want to investigate the behavior of coefficient a - is in (39) 

as a > 0. (If we try to set a = 0, we get a^ - iSg = 0/0, which is 

indeterminate.) Accordingly, substitute expansions (23)-(24) into (39) and 
simplify to obtain the expression 

WL-WL    WL-WI 

V2 - ^1     V2 - ^1 

This result corroborates the claim made under (28) that e behaves as 1/a as 

a > 0. That is, the optimum quadrature coefficient of the pure real tone gets 

arbitrarily large as frequency a tends to zero. 

If we combine (51) with the modelling function in (7), we have 

a^ cos(ak) + e^ sin(ak) ~ a^ + a^ak ~ 

 L^ LA + JLl yj ^    ^^  a>0,       (52) 

^0^2 - ^1   ^0^2 - ^1 

wh'ch is precisely (25) and (27). Thus, the limit, as a > 0, of modeling (7) 

is to fit the best constant plus linear trend to the data. 

15 
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FFF REALIZATION 

For purposes of minimizing computations, we henceforth assume that the 

weights have been normalized according to (42); that is, their sum equals 

unity. This feature is incorporated in the following equations and the 

resultant program. 

MANIPULATION INTO FFT FORMS 

According to (22), we are interested in evaluating B(a) in (44) over the 

range 0 £ a <_ TT, where functions W and L are given by (17). Suppose then that 

we focus attention on values of frequency a given by 

a = m Tp  for  0 £ m <_ y . (53) 

Integer M will be chosen to be a power of 2, and is unrelated to N, the number 

of data points. Then (17) yields 

L(m^j= ^w^ x^ exp(-i2iTmk/M)= ^ (m) , (54) 

k 

which is recognized as an M-size FFT of N nonzero real  weighted data values 

At the same time,   (17)  also gives for the window 

w/2m-^j=  ^W|^ exp(-i2iT2mk/M)  = 

^ w.^2 exp(-i2nmj/M) , (55) 

j even 

where we let j = 2k. Now if we define sequence 
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(56) 

then (55) becomes 

W^2m^j= ^6.  exp(-i2,rmj/M)E Jr(m) , 

J 

which is an M-size FFT of sequence \d.j. 

Direct employment of (54) and (57) in (44) yields 

B/m 2l) = 2 U^"^)! -Rey(m)jC^(m)] 
^     ^^ 1 - J-^(m)! 

(57) 

(58) 

Thus, if we evaluate the two FFTs for [<f(m)j and (^(m)} in (54) and (57), 

respectively, we have all the quantities necessary to determine B(m2ir/M) for 
0 <_ m < M/2. 

TWO REAL FFT's VIA ONE COMPLEX FFT 

Since (54) and (57) constitute FFTs of real sequences, they are not 

making full use of the capabilities of an FFT. To exploit the inherently 

complex nature of this tool, let 

^k " \^k ^ ^\      ^^^ 1 < k < 2N ,              (59) 

where sequence [d|^] was defined in (56). (Half of the real terms and half 

of the imaginary terms are zero in (59).) Then the FFT of size M of sequence 

(59) is 

Z(m) = ^Z|^ exp(-i2irmk/M) = cf(m) + \ ^[\x\)   , (60) 

where we presume that M > 2N. (Methods of circumventing this limitation are 
given in [10].) 

17 
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Using the realness of sequences [x^l, ^w^l, l<^u\,   it follows from 

(54) and (57) that 

Z*(>1 - m) = /(M - m) - i/(M - m) = ^(m) - i<^(m) .      (51) 

Now combining (50) and (61), we have 

2 :t{m)  =   Z(m) + Z*(M - m) = S^(m) + i D^im)   , 

2,^(m) = -i[Z(m) - Z*(M - m)] = S^(m) - i 0^(m) , (52) 

where the real sum and difference functions are defined as 

S^(m) = X(m) + X(M - m), 

Sy(m) = Y(m) + Y(M - m), 

D^(m) = X(m) - X(M - m), 

Dy(m) = Y(m) - Y(M - m), (53) 

in terms of the real and imaginary parts of FFT output Z(m) in (60), namely, 

Z(m) = X(m) + i Y(m) . (64) 

Equation (62) accomplishes the decoupling of the FFT output Z(m) so as to 

yield the two desired FFTs ^(m) and ^(m) indicated in (54) and (57). 

However, it is advantageous to continue with the breakdown of these two 

complex sequences ^(m) and ^(m), as done in (52), in terms of all the purely 

real quantities given in (63). For upon substitution of (52) in desired 

quantity B(m2ir/M) in (58), we obtain the simplified form 

/ ZA      ^x^'")'^^ - ^^'^^^ "■ ^l^^^^^  "" Sy(m)] + 2S^(m)D^(m)D (m) 
(m -jjr =  i ^!-Y^ ^ r -i  . (55) 

4 - (sj(m) + D^(m)) 

This latter form, which utilizes only real arithmetic, can be used only for 

0 < m < M/2. The values for B(0+) and B(IT-) must come from (25) and (30), 

respectively, with WQ = 1. A program for calculation of fB(m2ir/MJ} by means 

of (56), (59), (50), (63), and (55) is furnished in the appendix. 
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SELECTION OF FFT SIZE f^ 

It was presumed in (59) and (60) tnat FFT size M > 2N, where N is the 

number of data points, in order that there be an array element in location M-1 

available to receive data element id2M. However, there is an additional 

reason for choosing M this large, having to do with the rate at which B(a) 

varies. The function B(a) in (44) depends critically on window function 

W(2a). For equal weights, the results in (32) and (33) indicate that W(2a) 

changes significantly in an interval of length ir/N; in fact, this is the 

separation between zero crossings. If order to track this rapid variation in 

W, the increment 2ir/M in frequency a in (53) and (58) must be smaller than 

■niH.    Thus, requirement M > 2N is a minimal requirement; in fact, it may be 

advantageous to consider M several times larger than N, if storage and FFT 

execution time are not excessive. Of course, the larger M is taken, the less 

fine-grain interpolation will be required later. 

For other weightings than flat, such as Manning, where the effective 

length of the weighting is foreshortened due to taper at the edges, the window 

function W is broader, and the condition on M is alleviated somewhat. 

However, M > 2N is a good rule of thumb to use in most cases. 

INTERPOLATION PROCEDURE 

When the complete set of values of B(m2Tr/M) for 0 <^ m £ M/2 are 

available, they are searched to find the maximum value. This maximum value 

and the two neighboring bin outputs (m values) are then used in a parabolic 

interpolation procedure to refine the estimate of the location of the best 

value of frequency a and the corresponding maximum value of B(a). 

Finally, this latter value of a can be used as a starting value for a 

fine-grained search, again by means of parabolic interpolation, in the 

neighborhood of this peak. These features are all incorporated in the 

accompanying program for this search procedure, where direct use of (44) is 

made; the previous FFT results are of no use in this final vernier 

estimation. Along with each estimated frequency a, the corresponding 
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coefficient a - ie is also estimated and printed out. A few stages of 
0    0 ^ 

the vernier analysis suffice to give stable frequency estimates within the 

accuracy of the computer used here. 

20 



TR 7785 

RESULTS 

An example of N = 25 data points with FFT size M = 1024 is displayed in 

figure 1, for the data sequence 

X|^ = cos{k)  +-2- sin(k)      for      l<k<N (66) 

and for the equal (or flat) weighting case of (32). The abscissa is 

normalized frequency a = UA, and the ordinate is B(a) normalized relative to 

its peak value. The low-level sidelobes in figure 1 are due to the nature of 

the window W(2a), given by (33) for this case. 

The line labeled INITIAL gives the bin number Js in which the peak is 

located. This bin and the two adjacent ones are then interpolated by means of 

a parabola to yield the initial value for B(a) labeled Big and the abscissa 

estimate a = 1.0000445. This value of a is then employed in subroutine SUB B 

to give the corresponding value B(a). 

In the next two lines of the print out, the above value of a is perturbed 

by + Delta, the function 8(a) is computed, and parabolic interpolation is 

again used on these three points to give the estimates labeled as REFINED 

values. Then this refined a value is used to recompute B(a) and indicated as 

the MAXIMUM value in the print out. Finally, the coefficient estimates a and 

8, along with the minimum error, E . , are printed out. 

The whole cycle of perturbation and parabolic interpolation is repeated 

in the next separated four lines of print out, but this time with Delta 

decreased by a factor of 10. This cycle is repeated one final time in each of 

the figures presented. Prolonged repetition would result in excessive 

round-off error, due to the differencing of similar function values. 

If the weighting is changed to Manning, 

\ = 1 - cos(-^-^J  for  l<k<N, (67) 

21 



TR 7785 

the corresponding results are displayed in figure 2. The initial estimate is 

a = .99999970, which is then refined to a = 1. The coefficients converge 

rapidly to the correct values, and the figure displays no visible sidelobes 

for this case of Manning weighting. However, the window is broader. 

The results of figures 3 and 4 correspond to figures 1 and 2, 

respectively, except that white noise of power 1/12 has been added to the 

waveform of (56). Now the Hanning weighting result in figure 4 also displays 

sidelobes, due to random fitting of the particular noise samples utilized. 

The refined values of a converge to a = .99318 and a = 1.00208, respectively, 

which are not exactly correct, due to the additive noise. Also, the 

coefficient a and B are considerably off their correct values, although the 

Hanning results in figure 4 are better than for the flat weighting used in 

figure 3. 

Figures 5 and 6 are conducted for the two-tone data sequence 

x^ = coslk) + ^ sin{k) + cos(2k) , (68) 

with no additive noise. The second peak near a = 2 in these figures is due to 

the attempted match of model (7) to the data, when a is near 2. The program 

locks onto the stronger tone and indicates its frequency as a = .99447 and 

a = 1.00128, respectively. Again, the estimates of frequency a and 

coefficients a and B are better for the Hanning weighting in figure 6 than for 

the flat weighting in figure 5. This is due to the lower sidelobes of window 

W(2a) in the Hanning case. 
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SUMMARY 

An automatic procedure for determining the best frequency, amplitude, and 

phase of a real tone fitted to discrete real data has been devised and 

programmed. It employs a single complex FFT for the initial search and then 

refines the estimates by simple parabolic interpolation procedures. The size 

M of the FFT is unrelated to the number N of data points, but should generally 

be taken at least equal to 2N in order to guarantee adequate sampling in the 

frequency search. The user can input any real weights [vt^'\  of his choosing 

into the program; these are then automatically normalized to make their sum 

equal to unity. 

The procedure is applicable to data records of any length N, without any 

approximations. However, if there is considerable noise in the data, then 

large N will be required in order to attain accurate estimates of the tone 

frequency, amplitude, and phase. This is not a drawback of the least squares 

procedure or program, but is a fundamental limitation of estimation capability 

in the presence of noise. 

No derivatives of any of the error functions to be extremized are 

required in this approach. Instead, direct parabolic interpolation of the 

appropriate sampled functions is employed and can be carried through several 

stages to the desired degree of accuracy or until round-off error dominates. 

For a very near 0 or n, the approximation of B(a) by a parabola may not be 

adequate; special techniques may be required at these limits. 

29/30 
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APPENDIX 

PROGRAM FOR ESTIMATION OF TONE PARAMETERS 

Inputs required of the user are in 

line 10: N, number of data points, 

line 20: M, size of FFT. 

The program is configured to accept up to N = 8000 data points and an FFT size 

up to M = 16384. The user can also change the weighting from flat (in line 

200) to whatever weighting is of interest. The appropriate window FFT is 

undertaken automatically, by means of lines 290 and 560. The initial estimate 

of a and the plot of B{a) are completed by line 1010. If refined estimates of 

a are desired, CONT EXECUTE must be performed, and can be repeated for 

additional refinement. 

The terminology DOUBLE denotes INTEGER variables in BASIC on the HP 9000 

computer. Subroutine SUB B computes B{a) and coefficients a and e at any 

frequency a of interest. Generation of data for the examples here is 

accomplished in SUB Data, which must be replaced by the user to bring in his 

own data. 
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!  QUflRTER-CuSINE TABLE 

SPECIFY WEIGHTS, k=l:H 

10 H=25 !  NUMBER OF DATA POINTS 
20 M=1024 !  SIZE OF FFT; M > 2N REQUIRED 
:::0 PPINT " HUtlEER OF DATA P0 I \\TS N = " ; N 
40 PRINT "SIZE OF FFT M =";M 
50 D I M U < 1:8000), >'. d ( 1 : S O Q O > , X ( 0 : 163 8 3 ) , Y C 0 : 16 3 3 3 ) , C o ; ( O : 4 O 9 6 > 
60 R E D I M W ( 1 : N > , X d U : N ) , X ( O : M - 1 ) , Y ( O : M - 1 > , C o s ''. 0 : M •■■ 4 ;:■ 
70 DOUBLE N,M,Ms,Ks,Js,M2       'INTEGERS 
80 IF N>2*N THEN 120 
90 BEEP 
100 PRINT "n <= 2N; INCREASE M OR DECREASE N." 
110 PAUSE 
120 T=2.*PI/M 
130 FOR Ms=0 TO N/4 
140 COS'::MS)=COS(T*NS::' 

150 NEXT Ms 
160 MAT X='::0. > 
170 MAT Y=(Q.) 
180 S=0. 
190 FOR Ks=l TO N 
200 Wk=l. 
210 Wc:Ks)=Wk 
220 S=S+Wk 
230 NEXT Ks 
240 S=1.-'S 
250 W1=W2=0. 
260 FOR Ks=l TO N 
270 T=WCKs)*S 
280 WC;KS>=T 

290 Y(KS + KS:.'=T 

300 T=T*K£ 
310 W1=W1+T 
320 W2=W2+T*Ks 
330 NEXT Ks 
340 CALL Data': N , X d C * ') > 
350 So=To=Se=Tt=En=0. 
360 FOR Ks=l TO N STEP 2 
370 Tl=Xd<:Ks) 
380 T2=W(Ks>*Tl 
390 X';KS>=T2 

400 SO=SO+T2 

410 To=To+T2*Ks 
420 En=En+Tl*T2 
430 NEXT Ks 
440 FOR Ks=2 TO N STEP 2 
450 Tl=Xd(Ks> 
460 T2=W<Ks>*Tl 
470 X<:KS)=T2 

480 Se=Se+T2 
490 Te=Te+T2*Ks 
500 En=En+Tl*T2 
510 NEXT Ks 

SCALE WEIGHTS 
SO THAT SUM = 1 

MOMENTS OF 
WEIGHTS 

FILL UP DATA ARRAY Xd(l:N) 

!  TOTAL WEIGHTED ENERGY 
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Z< c. t.1 

5 3 0 
540 
550 
5 6 0 
5 70 
580 
590 
6 0 0 
6 1 0 
620 
6 30 
640 
650 
eee 
670 
680 
6 90 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
8 1 0 
320 
830 
840 
850 
860 
870 
8 8 0 
890 
900 
9 1 0 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 

L0=S€+So !  nONENTS 
Ll=Te+To !     OF 
L0t=S6-So !  WEIGHTED 
Llt,=Te-To !    DflTR 
C R L L F f t. 1 4 ■; M , C o s C * > , X •:: *::■,?(* > > 
n2 = M. 2 
T=W2-W1*W1 !  EVflLURTE E(a) IN y(0:N/2> 
X(0) = (Ll*Ll-2. *W1*L1*L0 + U2*L0*L0:>.-T 
X':;n2::i = c:Ll t *L11-2. *W1*L11 *L0t+U2*L0t *L0t >.-T 
FOR   n£=l    TO   M2-1 
Tl=X(t'1s> 
T2=xai-ns> 
Sx=Tl+T2 
Dx=Tl-T2 
Tl=vais::' 
T2=Y(N-ns) 
Sy=Tl+T2 
Dy=Tl-T2 
Tl=Dx*Sx*Dy 
T 2 = 4 . - ( S '■,> * S y + D x * D x ) 
X ( M i ) = ( S X * S X * ( 2 . - S y ) + D v * D v * < 2 . + S y > + T 1 + T 1 ':> ■■■' T 2 
NEXT   Ms 
Ei g = X(0:J 
Js = 0 
FOR   Mi=l    TO   M2 
T = X(Ms::' 
IF   T<=Big   THEN   810 
Bi g = T 
Js = Ms 
NEXT   Ms 
IF Js>0 RND J=.<n2 THEN 850 
T = 0. 
GOTO 890 
Tl=X'::Ji+l> 
T2=X<Js-l) 
T=.5*(Tl-T2)x(Eig + Bi g-Tl-T; 
Ei g = Bi g+. 25* <: T 1-T2 > *f 
RS=(JS + T::'*2. *PIXN 

I SEARCH FOR MAX I MUM 

MAXIMUM VRLUE RND 
LOCATION IN ARRAY 

PARABOLIC INTERPOLATION 
FOR MRXIMUM VRLUE 
AND LOCATION OF MAXIMUM 

CALL E ^ N, As, W ■; * >, Xd ( * >, A 1 pha. Bet a, Ba;' 
PRINT "INITIAL: ";"Js =";..Ts;" Big =";Eig;" a =";As;" E ■: 
G I NI T 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW 0.,M2,0.,Ba 
GRID M2X3.,Baxie. 
FOR Ms=0 TO M2 
PLOT Ms,X(Ms;;' !  PLOT B'; 
NEXT Ms 
PENUP 
PAUSE 
GRAPHICS OFF 

":Ea 

OVER C0,PI] 
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1 0 3 0 
104 0 
1050 
1 0 b 0 
1070 
1080 
1090 
1100 
11 10 
1 120 
1 130 
1 140 
1150 
1160 
1 170 
1 180 
1 190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 

Delta=l..M 
Delta=Delt a*. l 
CALL   E(N,fls-De1t a,w(* >,Xd 
CALL   E(H,Rs + De1t a,W(*),Xd 
T = . 5 * ( E ap - B am ) •' ( E a+ E a- E am 
IF   flESdXl.    THEN    1100 
PRINT    "REFINED    INTERPOLflTI ON    I 
fls=fis+T*Delta 
B a= B a+ . 2 5 * ( B ap - E am) * T 

!  INITIAL SEARCH INCREMENT 
!  FINE-GRAIN SEARCH 

*>,Alpha,Beta,Bam) 
*) , Al pha, Beta, Eap> 
Bap) 

BEYOND EDGES OF SEARCH INCREMENT: ";T 

a =";A£ 
E<a:J =";Ba 
),XdC*),Alpha,Bet 
B(a> =";Ea 

; Al phi 

RRINT "REFINED 
PRINT "REFINED 
CALL ECN,As,W<i 
PRINT "MAXIMUM 
Emi n = Eri-Ba 
PRINT "Alpha = 
PRINT 
PAUSE 
GOTO 1040 
END 

! 

SUB EC DOUBLE 
DOUBLE Ks 
A2=As+As 
Wr=Wi =Lr = Li =0. 
FOR Ks=l TO N 
T w = U (! K s :> 
T X = T w * X d (! K s- ;> 
Tl=As*Ks 
T2=A2*Ks 
W r- = W r + T w * C 0 S < T 2 > 
Wi =W1-Tw*SINCT2;' 
Lr = Lr + Tx*C0SCTl > 
Li =Li -Tx*SIN'.'Tl > 
NEXT Ks 
Tl=<l.-Wr>*Lr 
T2=':: 1 . +Wr>*Li 
T = 2. ■■■■ •; 1. - i W r * W r + W i * W i ':> > 
Al pha='.'Tl-Wi *Li >*T 
Bet.a=CWi *Lr-T2)*T 
Ea=Wi *Lr*Li 
E a = ( T 1 * L r + T 2 * L i - E a - B a ::■ * T 
SUEEND 
I 

L,B^ 

!  MINIMUM ENERGY 
Beta = " ; Beta; "   Emi n ; E m i n 

N , REAL As, W C * > , Xd C # ) , A 1 pha, Bet a, Ba!) 
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31J E F f t, 1 4 ( D iJ U E L E N , R E fl L C o s 1 41" 0 
1470 DOUBLE H1,H2,M3 
14 S 0 D d U E L E 11,12,1 3 
1490 IF N=l THEN SUB 
1500 IF H>2 THEN 
1510 R = X(0>+X<: 1 ::■ 
1520 XC 1 >=X'::0::'-X 
1530 X(:0>=R 
1540 fl = Y<:0::'+Y( 1 ) 
1550 V( 1 )='T'(0:J-Y 
1560 Y'::0::'=fl 
1570 SUEEXIT 
1580 Nl=N/4 
1590 N2=N1+1 
1600 N3=N2+1 
1610 H4=N3+N1 
1620 Log2n=l . 4427*L0G<N::' 
1630 FOR 11=1 TO Log2n 
1640 I2 = 2'-(Log2n-Il :> 
1650 13=12+12 
1660 I4=N-I3 
1670 FOR 15=1 TO 12 
1680 I6=(I5-1>*I4+1 
1690 IF I6<=N2 THEN 1730 
1700 Rl=-CosCN4-I6-l> 
1710 R2 = -Co£a6-Nl-l) 
1720 GOTO   1750 
1730 Rl=Co£a6-i;j 
1740 fl2=-CosCH3-I6-l> 
1750 FOR   17=0   TO   N-I 
1760 18=17+15-1 
1770 19=18+12 
1780 T1=X<IS> 
1790 T2 = XU9> 
1800 T3=Y(I8> 
1810 T4=Y(I9> 
1S20 fl3=Tl-T2 
1830 fl4=T3-T4 
1840 X(IS>=T1+T2 
1850 Y<IS)=T3+T4 
I860 XC19>=fll*fl3-fl2*fl4 
1870 Y^: I9>=Rl*fl4 + R2*R3 
1880 NEXT 17 
1890 NEXT 15 
1900 NEXT II 

, N 4 , L o Q 2 n , J , K 
, 14, I5JI6, 17, l; 
EXIT 

1580 

1) 

1 

I     INTEGER; 
19,110,111 

NO 

112, I 

2 ■■■14=16384;    8 SUE 
31   =   2,147,483 ,64 
1 3 , 11 4 , L ■:; 0 ! 1 3 ) 

STEP   13 
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1910 
1920 
19 30 
19 4 0 
19 5 0 
1 9 6 0 
1970 
1980 
1 9 9 0 
2 0 0 0 
2 0 1 0 
2 0 2 0 
2 0 3 0 
204 0 
2050 
2 0 6 0 
2070 
2080 
2 0 9 0 
2100 
21 10 
2120 
2130 
2140 
2150 
2150 
2170 
2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 

I l=Log2n+l 
FOR 12=1 TO 14 
L ( I 2 - 1 > = 1 
IF    I2>Lciq2n   THEN 
LC 12-1 )=2- (. 11-12; 
NEXT 12 . 
K = 0 

11=1 TO L(13: FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 

12=1 1 
13=12 
14=13 
15=14 
16=15 
17=16 
18=17 
19=18 
110=19 

TO 
TO 
TO 
TO 
TO 
TO 
TO 
TO 
TO 

12: 
11: 
le; 
9) 

L': 
L': 
L': 
L <: 8) 
L ( 7 ) 
L (6) 
L (5) 
L(4; 

STEP 
STEP 
STEP 

STEP 
STEP 
STEP 
STEP 
STEP 
STEP 

L(l 
L( 1 
L( 1 

L(10 
L':9;' 
L ( 3 ) 
L (7) 
L(6':> 

L(5 
I 11 = 110 
112=1 1 1 
I 13=112 
I 14=113 

.J=I 14-1 
IF K>.J THEN 
fl=X(K> 
X ( K ) = X C J > 
X(.J)=fl 
fl = YC.K> 
Y';K>=Y'::.;::• 
Y<J>=fl 
K = K+1 
NEXT 114 
NEXT 113 
NEXT 112 
NEXT 111 
NEXT 110 
NEXT 19 
NEXT 18 
NEXT 17 
NEXT 16 
NEXT 15 
NEXT 14 
NEXT 13 
NEXT 12 
NEXT II 
SUBEND 

! 
SUB Data':; DOUBLE 
DOUBLE Ks 
FOR Ks=l TO N 
Xd(Ks>=COS(Ks::' + , 
NEXT Ks 
SUBEND 

TO L(3) STEP LC 
TO L(2::' STEP L< 
TO L<1> STEP L< 
TO L<0) STEP L<. 

2200 

1 ;■ 

HjREflL Xd( 

5*SIN'::KS) 
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